Künstliche Intelligenz für den Maschinenbau
Forschung aktuell: Mit künstlicher Intelligenz Werkzeugmaschinen warten
Freitag, 31. Januar 2020
| Redaktion
Teilen auf:
Auf der Hannover Messe 2020 vom 20. bis 24. April zeigt das KIT in Halle 25 am Stand C14, was mit der intelligenten Spindelüberwachung in Kugelgewindetrieben möglich ist
Auf der Hannover Messe 2020 vom 20. bis 24. April zeigt das KIT in Halle 25 am Stand C14, was mit der intelligenten Spindelüberwachung in Kugelgewindetrieben möglich ist, Bild: KIT

Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System zur vollautomatischen Überwachung von Kugelgewindetrieben in Werkzeugmaschinen entwickelt. Dabei kommt eine direkt in die Mutter des Kugelgewindetriebs integrierte Kamera zum Einsatz. Auf Basis der dabei erzeugten Bilddaten überwacht künstliche Intelligenz kontinuierlich den Verschleiß und reduziert so den Maschinenstillstand.

Die Wartung und der rechtzeitige Tausch von defekten Bauteilen in Werkzeugmaschinen ist ein wichtiger Bestandteil des Produktionsprozesses beim Maschinenbau. Bei Kugelgewindetrieben, wie sie etwa in Drehmaschinen zur Präzisionsführung bei der Herstellung von zylindrischen Bauteilen zum Einsatz kommen, wird der Verschleiß bislang manuell festgestellt. „Die Wartung ist deshalb mit Montagearbeiten verbunden. Die Maschine steht dann erst einmal still“, sagt Professor Jürgen Fleischer vom Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT). „Unser Ansatz basiert dagegen auf der Integration eines intelligenten Kamerasystems direkt in den Kugelgewindetrieb. So kann ein Anwender den Zustand der Spindel kontinuierlich überwachen. Besteht Handlungsbedarf, wird er automatisch informiert.“

Das neue System besteht aus einer an der Mutter des Kugelgewindetriebes angebrachten Kamera mit Beleuchtung, die mit künstlicher Intelligenz (KI) zur Auswertung der Bilddaten kombiniert ist. Während der Bewegung der Mutter auf der Spindel macht sie von jedem Spindelabschnitt Einzelaufnahmen. Dadurch wird jeweils die gesamte Oberfläche der Spindel analysiert.

Die Kombination von Bilddaten aus dem laufenden Betrieb mit Methoden des Maschinellen Lernens ermöglicht den Anwendern des Systems eine direkte Bewertung des Zustands der Spindeloberfläche. „Wir haben unseren Algorithmus mit Tausenden Aufnahmen trainiert, sodass er nun souverän zwischen Spindeln mit Defekt und solchen ohne unterscheiden kann“, so Tobias Schlagenhauf (wbk), der an der Entwicklung des Systems mitgearbeitet hat. „Durch eine weitere Auswertung der Bilddaten lässt sich der Verschleiß außerdem genau quantifizieren und interpretieren. So können wir unterscheiden, ob es sich bei einer Verfärbung einfach nur um Schmutz oder aber um schädlichen Lochfraß handelt.“ Beim Training der KI wurden alle denkbaren Formen einer visuell sichtbaren Degeneration berücksichtigt und die Funktionalität des Algorithmus mit neuen, vom Modell noch nie gesehenen Bilddaten validiert. Der Algorithmus eignet sich für alle Anwendungsfälle, bei denen bildbasiert Defekte auf der Oberfläche einer Spindel identifiziert werden sollen und lässt sich auch auf andere Anwendungsfälle übertragen.

Auf der Hannover Messe 2020 vom 20. bis 24. April zeigt das KIT in Halle 25 am Stand C14, was mit der intelligenten Spindelüberwachung in Kugelgewindetrieben möglich ist. Darüber hinaus ist das KIT in Halle 27 am Stand L51 (Thema: Energie) sowie auf weiteren Themenständen vertreten.
 

Passende Anbieter zum Thema

Auch interessant für Sie

Flexible Hochgeschwindigkeits-3D-Kommissionierung zeigt, wie Unternehmen anstrengende Beladungsaufgaben bei bereits vorhandenen Linien automatisieren können
TM- Roboter von Omron
Batteriemodul
Modular zur Fabrik der Zukunft
Modulare Zertifizierung für einen schnellen und reibungslosen Anlagenumbau
Neues KI-Modul ermöglicht mit vorausschauenden Analysefunktionen datengestützte Entscheidungen auch ohne Unterstützung von Data Science

Surftipps